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Background: Psychopathy is a disorder of personality characterized by severe impairments of social conduct,
emotional experience, and interpersonal behavior. Psychopaths consistently violate social norms and bring consid-
erable financial, emotional, or physical harm to others and to society as a whole. Recent developments in analysis
methods of magnetic resonance imaging (MRI), such as voxel-based-morphometry (VBM), have become major
tools to understand the anatomical correlates of this disorder. Nevertheless, the identification of psychopathy by
neuroimaging or other neurobiological tools (e.g., genetic testing) remains elusive.
Methods/Principal findings: The main aim of this study was to develop an approach to distinguish psychopaths
from healthy controls, based on the integration between pattern recognition methods and gray matter quantification.
We employed support vector machines (SVM) and maximum uncertainty linear discrimination analysis (MLDA),
with a feature-selection algorithm. Imaging data from 15 healthy controls and 15 psychopathic individuals (7
women in each group) were analyzed with SPM2 and the optimized VBM preprocessing routines. Participants
were scanned with a 1.5 Tesla MRI system. Both SVM and MLDA achieved an overall leave-one-out accuracy
of 80%, but SVM mapping was sparser than using MLDA. The superior temporal sulcus/gyrus (bilaterally) was
identified as a region containing the most relevant information to separate the two groups.
Conclusion/significance: These results indicate that gray matter quantitative measures contain robust information
to predict high psychopathy scores in individual subjects. The methods employed herein might prove useful as an
adjunct to the established clinical and neuropsychological measures in patient screening and diagnostic accuracy.
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2 SATO ET AL.

Psychopathy, the first personality disorder recognized
in psychiatry (Millon, Simonsen, Davis, & Birket-
Smith, 2002), is defined by a cluster of interpersonal,
affective, lifestyle, and antisocial traits and behav-
iors that include grandiosity, egocentricity, decep-
tiveness, lack of empathy or remorse, irresponsi-
bility, impulsivity, and a tendency to violate social
norms (Hare & Neumann, 2005). Psychopathy can
be assessed in forensic settings by the Psychopathy
Checklist–Revised (PCL–R) and in nonforensic con-
texts by the Psychopathy Checklist: Screening Version
(PCL–SV), each supported by extensive evidence for
their reliability and validity (Hare, 2006). As a stand-
alone instrument for assessing psychopathy in civil
psychiatric and community populations (de Oliveira-
Souza, Ignácio, Moll, & Hare, 2008a; Guy & Douglas,
2006), the PCL–SV is strongly related to the PCL–
R both conceptually and empirically (Cooke, Michie,
Hart, & Hare, 1999). The widespread adoption of the
PCL scales as a common metric for psychopathy has
led to a dramatic increase in theoretical and empirical
work, paving the way for research on its neurobiolog-
ical substrates (Glenn & Raine, 2008). In particular,
recent advances in magnetic resonance imaging (MRI)
acquisition and processing, such as the methods for
quantitative and automated assessment of brain struc-
ture (Good et al., 2001) have opened up new possi-
bilities. Converging evidence indicates that the core
features of the psychopathic personality are related
to discrete volumetric changes in a set of frontotem-
poral and subcortical brain regions (De Brito et al.,
2009; de Oliveira-Souza et al., 2008b; Müller et al.,
2008; Tiihonen et al., 2008) that underlie moral cog-
nition and behavior (Moll et al., 2005). These recent,
quantitative, voxel-based studies have confirmed and
extended the findings of earlier ones, which employed
radioisotope and volumetric MRI manual tracing tech-
niques (e.g., Soderstrom et al., 2002; Yang et al.,
2005). Important progress has also been made on the
more proximate causes of psychopathy; evidence sug-
gests that the brain differences in psychopathic indi-
viduals are neurodevelopmental in nature, and arise
from genetic and environmental factors (e.g., physi-
cal abuse) and their interactions (Bezdjian et al., 2011;
Gao et al., 2010). A detailed account of these aspects
is outside the scope of the current paper, and can
be found in recent authoritative reviews (Gao, Glenn,
Schug, Yang, & Raine, 2009).

Exciting as these neuroanatomical findings may
be, their clinical utility remains elusive. Imaging
studies on patient populations generally provide
results on a group level, but their use for diag-
nostic classification of individual patients has yet
to be established. The development of reliable

and specific neuroanatomical biomarkers for psy-
chiatric disorders—–including psychopathy—would
obviously be important. Typically, group studies using
brain imaging rely on massive, voxel-by-voxel appli-
cation of the general linear model (GLM) (Friston
et al., 1995) or its particular cases, such as t-tests and
ANOVA. This model is useful to provide statistical
hypothesis testing for group differences or linear asso-
ciations among variables. In neuroimaging, GLM is
applied independently to all intracranial voxels, pro-
viding p values for group comparisons at each voxel.
These p values are corrected for multiple compar-
isons, using the false discovery rate (FDR) (Benjamini
& Hochberg, 1995) or random fields theory (RFT)
(Worsley, 1995), and then compared to a prespecified
significance level. This procedure is the core of uni-
variate statistical analysis for brain mapping, by far
the most frequently used approach. However, univari-
ate analysis may not be the most suitable approach in
clinical neuroimaging for two reasons: (1) the brain
is organized in several highly structured networks and
univariate, voxel-by-voxel analysis does not take into
account this property, treating brain voxels indepen-
dently; and (2) statistically significant differences do
not necessarily mean cognitive or clinically relevant
differences.

The interconnected structure of the brain implies
that regions may influence one another, both struc-
turally and functionally, and thus multivariate
approaches may be more suitable than univariate ones
(Lukic, Wernick, & Strother, 2002). Furthermore,
groups or conditions may be characterized by the
topology or changes of these relationships (Sato et al.,
2008a). In addition, statistical hypothesis testing
for group differences is an inferential procedure
that compares parameters between two populations
based on measures calculated over the samples.
Therefore, assuming that an adequate test is applied,
any difference in a parameter of interest between
two populations will be detected, provided the sam-
ple sizes are large enough. Thus, complementary
to statistical tests, one major point of concern is
whether or not differences between groups can be
used to allocate each subject to a particular group
based on a priori defined individual variables (e.g.,
symptom clusters, diagnostic categories, genetic
markers). This is, in fact, an ultimate challenge of
clinical diagnosis research, with vast implications
for diagnosis and treatment. In the realm of imaging
techniques, functional and structural MRI findings
have been increasingly employed as “intermediate
phenotypes” or “endophenotypes,” capturing at a
meso- or macroscopic level features that reflect com-
plex and often subtle factors, including environmental,
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PATTERN RECOGNITION OF MRI IMAGES IN PSYCHOPATHY 3

genetic, and epigenetic ones (Meyer-Lindenberg &
Weinberger, 2006). The potential of this approach is
reflected by the rapidly growing number of studies
using quantitative techniques such as diffusion tensor
imaging and voxel-based morphometry (VBM) in this
context (Bertisch et al., 2010; Bradley et al., 2009;
Camchong, Lim, Sponheim, & Macdonald, 2009;
Honea et al., 2008).

Statistical learning or pattern recognition methods
have become attractive approaches in computer-aided
diagnosis, mostly because they can be applied in a
multivariate fashion and they provide classification
rules for predicting the group membership of a new
subject. In the last decade, multivariate pattern recog-
nition providing a joint analysis of all voxels was
proposed for neuroimaging analysis (Fan, Shen, &
Davatzikos, 2005; Golland, Grimson, Shenton, &
Kikinis, 2000; Golland et al., 2002; Lao et al.,
2004; Lukic et al., 2002; Sato et al., 2008b, 2009;
Thomaz et al., 2007a, 2007b). Nevertheless, only a
few studies have explored the predictive power of
these approaches in neurological or neuropsychiatric
disorders. Emblem et al. (2008) applied support vec-
tor machines (SVM) to predict glioma grades, using
perfusion images. Gerardin et al. (2009) used hip-
pocampal shape to classify Alzheimer’s disease, mild
cognitive impairment, and controls with an accu-
racy of 94%. A classification method for primary
progressive aphasia was developed by Wilson et al.
(2009), showing good accuracy and generalization
power. Ecker et al. (2010) evaluated the predictive
power of SVM for whole-brain structural images in
autism (gray matter VBM), and also demonstrated
good discriminative power between patients and nor-
mal controls (specificity of 86% and sensitivity of
88%). Davatzikos, Bhatt, Shaw, Batmanghelich, &
Trojanowski, (2010) have shown that it is possible
to predict the conversion of mild cognitive impaired
patients to Alzheimer’s disease, based on a combined
analysis between VBM and spatial patterns of abnor-
malities. Recently, Koutsouleris et al. (2010) studied
the prediction of vulnerability and transition to psy-
chosis by using support vector regression.

Despite the clinical and societal relevance of psy-
chopathy, pattern classification of neuroimaging data
has not yet been employed in this condition. In this
paper, we evaluate the application of pattern recog-
nition methods to gray-matter images, focusing on
distinguishing individuals with psychopathy from nor-
mal controls. Two classification methods were investi-
gated: SVM and maximum uncertainty linear discrim-
inant analysis (MLDA). Furthermore, we introduced
an approach for feature selection to improve classi-
fication rates, a useful tool for general subject/group

classification when dealing with relatively small sam-
ples of brain imaging data. The main goal of the
present study was to investigate whether classifiers
could discriminate between subject groups by mul-
tivariate pattern analysis of whole-brain gray matter
voxels, which is essentially distinct from attempt-
ing to map which voxels show statistical differences
between subject samples. From previous studies (De
Brito et al., 2009; de Oliveira-Souza et al., 2008b;
Moll, Zahn, de Oliveira-Souza, Krueger, & Grafman,
2005; Müller et al., 2008; Tiihonen et al., 2008), we
had, nonetheless, some a priori expectations about
which brain regions would likely shelter discriminant
voxels. These regions included the anterior and ventral
sectors of the prefrontal cortex and the superior tem-
poral sulcus region, which were consistently activated
in several functional MRI studies on control subjects
(see Moll et al., 2005, for a review), and were found to
be structurally abnormal in psychopaths (de Oliveira-
Souza et al., 2008b; Müller et al., 2008; Tiihonen et al.,
2008).

MATERIAL AND METHODS

All participants provided written informed consent
before entering the study, which was approved by
the D’Or Institutional Review Board (Rio de Janeiro,
Brazil). The 15 patients (8 men, 7 women) who agreed
to undergo MRI scanning were part of a larger group
of 50 patients with neurological and/or neuropsy-
chiatric disorders who were brought to consultation
by relatives or acquaintances for a variety of emo-
tional and behavioral problems (de Oliveira-Souza
et al., 2008b). Each patient fulfilled the DSM-IV adult
criteria for antisocial personality disorder (American
Psychiatric Association, 1994) and was assessed with
the PCL–SV as the primary measure of interest (Hart,
Cox, & Hare, 1995). Their occupational history was
erratic and unstable. They lived in the community, but
eventually came to medical attention due to chronic
and recurrent misbehaviors, which did not result in
criminal prosecution. The control group included 15
normal volunteers matched on gender, age, and educa-
tion, and without a history of neurological or psychi-
atric disorders or serious misconduct. Further details
on participants’ characteristics and behavioral results
can be found elsewhere (de Oliveira-Souza et al.,
2008b). Briefly, there were no significant differences
between groups in gender, age, education, handedness,
global cognitive status, and executive performance
(Table 1).
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4 SATO ET AL.

TABLE 1
Demographic and neuropsychological information of the

sample evaluated in the current study

Controls Patients

Education (years) 11 ± 2 11 ± 2
Age (years) 32 ± 13 32 ± 14
MMSE (0–30) 28.9 ± 1.1 28.7 ± 1.9
Handedness (R/L) 13/2 14/1
PCL–SV (0–24) 0.4 ± 1.0 17.8 ± 3.8

WCST

Categories completed (0–6) 5.4 ± 1.4 5.0 ± 1.6
Perseverative errors (0–127) 14 ± 12 18 ± 11

Set failures (0–22) 0.80 ± 1.1 1.2 ± 1.0

Notes: MMSE: Mini Mental Status Examination; PCL–SV:
Psychopathy Checklist, Screening Version; WCST: Wisconsin Card
Sorting Test. Patients and controls were matched in all scores,
except for the PCL–SV (t-test, p < .05).

Image acquisition

MRI scans were acquired at the Department of
Radiology at Barra D’Or Hospital, using a 1.5 Tesla
MR System (Siemens Medical Systems, Erlangen,
Germany), with a standard quadrature head coil.
For each volunteer, a high-resolution, T1-weighted,
3D structural volume was obtained (MPRAGE pulse
sequence, TR = 9.7 ms, TE = 4 ms, TI = 300 ms,
flip angle = 12◦, field of view = 256 mm, slice thick-
ness = 1.25 mm, matrix size = 256 × 256, 128 sagittal
slices, in-plane resolution of 1 mm × 1 mm).

Image preprocessing

Automated preprocessing of structural images was
carried out using the package SPM2 (Wellcome
Department of Imaging Neuroscience, London, UK;
http://www.fil.ion.ucl.ac.uk/spm). The optimized
VBM protocol was used (for details on the pre-
processing steps, see the Methods section in de
Oliveira-Souza et al. (2008b). For the purpose of the
present investigation, the normalized, smoothed (Full
width at half maximum = 12 mm) unmodulated gray
matter (GM) images (corresponding to GM “concen-
tration,” or GMC) were employed for all subsequent
pattern classification analyses. The statistical steps
of VBM processing and the resulting topographical
maps previously reported in (de Oliveira-Souza
et al., 2008b) were disregarded for the purposes of
the present study, and did not affect the statistical
inferences of reported herein.

SVM and maximum uncertainty linear
discrimination

The typical task of the statistical learning (or classi-
fication) methods is to use the features provided by
the previous stages in this work the preprocessed VBM
gray matter values to assign the object of interest to a
specific group or class. This assignment can be done
directly, using risk minimization-based approaches
such as SVM (Vapnik, 1998), or indirectly as in the
spectral multivariate analysis of the data with the
Linear discriminant analysis (LDA)-based approaches
(Devijver & Kittler, 1982; Fukunaga, 1990). Both
linear kernel SVM and LDA are discriminant meth-
ods that seek to find a classification boundary that
separates data into different groups with maximum
precision. Recent studies have suggested that these two
approaches can be successfully applied to neuroimag-
ing data sets (Mourão-Miranda, Bokde, Born, Hampel,
& Stetter, 2005; Sato et al., 2008b; Thomaz et al.,
2007b). This is because, by being linear methods,
they allow the quantification of discriminative infor-
mation contained at each predictor variable (voxel),
which can be directly obtained from the separating
hyperplane coefficients. There are, however, important
differences between these two approaches on extract-
ing and classifying discriminating information from
data.

The primary purpose of SVM is to maximize the
width of the margin between two distinct sample
classes (Vapnik, 1998). Given a training set that con-
sists of N pairs of (x1, y1), (x2, y2), . . . , (xN , yN), where
xi denotes the K-dimensional training observations
and yi ∈ {−1, + 1} the corresponding classification
labels, the SVM method seeks to find the hyperplane
defined by

f (x) = (x · w) + b = 0,

which separates positive and negative observations
with the maximum margin. It can be shown that
the solution vector wsvm (hyperplane coefficients) is
defined in terms of a linear combination of the training
observations; that is,

wsvm =
N∑

i=1

αiyixi,

where αi are non-negative coefficients obtained by
solving a quadratic optimization problem with linear
inequality constraints. Those training observations xi

with non-zero αi lie on the boundary of the margin
and are called support vectors (Vapnik, 1998). In the
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PATTERN RECOGNITION OF MRI IMAGES IN PSYCHOPATHY 5

present study, only the linear kernel was applied, and
the cost parameter was set to 1. The description of the
SVM solution does not make any assumption about
the distribution of the data, focusing on the observa-
tions that lie close to the opposite class; that is, on the
observations that most count for classification (Hastie,
Tibshirani, & Friedman, 2001).

The LDA solution, on the other hand, is a spec-
tral matrix analysis of the data and is based on the
assumption that each class can be represented by its
distribution of data; that is, the corresponding mean
vector (or class prototype) and covariance matrix (or
spread of the sample group) (Hastie et al., 2001). In
other words, LDA depends on all of the data, even
points far away from the separating hyperplane; its
main objective is to find a projection matrix Wlda that
maximizes Fisher’s criterion (Fukunaga, 1990):

∣∣WTSbW
∣∣

WTSwW
,

where Sb and Sw are respectively the between- and
within-class scatter matrices. Fisher’s criterion is max-
imized when the projection matrix Wlda is composed
of the eigenvectors of S−1

w Sb with at most number of
classes – 1 non-zero eigenvalues (Devijver & Kittler,
1982). In the case of a two-class problem, the LDA
projection matrix is, in fact, the leading eigenvector
wlda of S−1

w Sb, assuming that Sw is invertible. However,
in limited sample and high dimensional problems, such
as the one under investigation, Sw is either singular or
mathematically unstable, and the standard LDA can-
not be used for the classification task. To avoid these
critical issues, we have calculated the leading eigen-
vector wlda (hyperplane coefficients) by a MLDA that
considers the issue of stabilizing the Sw estimate with
a multiple of the identity matrix (Thomaz, Kitani, &
Gillies, 2006).

Classification and brain mapping

As described in the previous section, SVM and MLDA
are classifiers based on finding a discriminative hyper-
plane, where the decision to which group a subject
belongs is achieved by projecting the gray matter maps
onto this hyperplane. For each voxel, there is an associ-
ated coefficient defining the discriminative hyperplane,
which is fully specified by the set of coefficients of
all voxels. The absolute value of this coefficient is a
measure of how the related voxel predicts the group-
ing of the subjects; that is, it is an index of the amount
of discriminative information contained in this brain
region.

A well-known obstacle to the application of clas-
sification methods in neuroimaging is the huge dimen-
sionality of the data. In most VBM studies, the number
of subjects is in the order of tens, while the number of
voxels is in the order of hundreds of thousands. Since
we are interested in using the gray matter values at
each voxel to predict the class of a subject, this means
that we have thousands of variables to predict the class
of tens of subjects. This obstacle, known as the “curse
of dimensionality,” may lead to overfitting; that is,
the classifiers are excellent for predicting the subjects
used to define the discriminative hyperplane, but they
may perform poorly in predicting the class for a new
subject. In other words, if a subject is used to train
the classifier, the classifier would provide an accurate
prediction for this particular subject, but the general-
ization power for a new individual is not guaranteed.
In keeping with this limitation, all accuracies presented
in this paper will be based on a leave-one-subject-out
cross-validation procedure. This approach consists in
leaving one subject out of the training set, training the
classifier with the remaining subjects, and then eval-
uating the generalization power of the classifier by
testing the excluded subject.

Despite the fact that both SVM and MLDA are pat-
tern recognition approaches developed to deal with
high-dimensional data, the inclusion of confounding
variables with little relevant information, (i.e., noise)
as predictors may lead to low accuracy rates. A feature
(in this case, a voxel) selection step may be use-
ful to improve the accuracy rates. The elimination of
voxels that did not contain discriminative information
to differentiate the groups may also be useful for
brain mapping, since the relevant voxels are identified.
Thus, the feature selection step is important to avoid
overfitting and is also suitable for brain mapping.

In this paper, image analyses and processing were
carried out in the following steps (Figure 1):

1. Process the data with the VBM pipeline to obtain
unmodulated gray matter concentration maps
(GMC) for each subject. This pipeline includes
image intensity normalization, spatial normaliza-
tion, and spatial smoothing and segmentation for
cerebrospinal fluid, and gray and white matter.

2. Mask the volumes for considering only intracra-
nial and gray matter high-probability voxels. This
step is important to select only voxels with rele-
vant and interpretative gray matter coefficients.

3. Leave one subject out of the sample.
4. Build a feature matrix X, where the columns cor-

respond to voxels (K features), and each row
contains the data of each subject (N individuals).
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6 SATO ET AL.

Figure 1. Diagram illustrating the steps for leave-one-out classification and feature selection implemented in this study. The subject left out in
each iteration of the leave-one-out procedure is used to evaluate the prediction accuracy. PCA, principal component analysis.

5. Normalize each column of matrix X to have mean
equal to zero and variance equal to one, obtaining
a feature matrix Z.

6. Train the classifier (SVM or MLDA), using the
feature matrix Z and the label (groups) of the
subjects included in this matrix.

7. Rank each voxel (feature) by its level of discrim-
inative information measured by the absolute
coefficients in hyperplane vector w. Apply the
feature selection, keeping the subset (Q%) of
more informative voxels set. Note that this step
also produces a mask of voxels containing the
discriminant information.

8. Retrain the classifiers for this subset of “most
informative” voxels.

9. Process the data of the subject-out for normal-
ization (step 4) and feature selection (step 8),
and predict his or her group, using the classifier
trained at Step 8.

10. Return to Step 3 until all subjects have been
processed.

It is important to emphasize that in this procedure,
the feature selection is applied for each subject-out.
This implies that the voxels used by the classifiers
in each leave-one-out may differ. Thus, we propose
a brain-mapping strategy based on the proportion
of overlap of informative voxels masks (obtained at
step 7) between all leave-one-out loops. Note that, in
practice, the solution will be sparse, since only a small
number of voxels contain discriminative information.
Furthermore, the overlap proportion at each voxel

allows the evaluation of the procedure’s robustness.
In this study, these steps were carried out for differ-
ent values of Q (0.01%, 0.05%, 0.10%, and 1%), in
order to evaluate the performance of the nested subset
of voxels. In addition, it is important to emphasize that
is not necessary to define regions of interest (ROI) a
priori, and that the automated identification of relevant
voxels is not based on mass-univariate statistical tests;
instead, relevant voxels are identified in a multivariate
fashion from the voxel maps obtained in step 7. The
most discriminant regions were based on feature rank-
ing. Furthermore, the discrimination maps were used
solely to make sure that the results were not driven by
spurious signals (e.g., border effects, CSF), but from
brain regions relevant to social cognition and behavior.

RESULTS

The estimated classification rates for Q% = {0.01%,
0.05%, 0.10%, and 1%} were {70%, 80%, 73%, 60%}
and {67%, 77%, 80%, 70%} for SVM and MLDA,
respectively. Note that the classifiers achieved an over-
all accuracy of 80%, but to provide this rate, MLDA
uses the 0.1% highest discriminative features, while
SVM is more parsimonious, requiring only 0.05%.
Figure 2 highlights the brain regions containing the
discriminative information used by the classifiers,
after the feature selection step. These maps point
out that the unmodulated gray matter coefficient at
the left superior temporal gyrus/sulcus (STG/STS)
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PATTERN RECOGNITION OF MRI IMAGES IN PSYCHOPATHY 7

Figure 2. Brain mapping of regions containing the information used by the classifiers to discriminate high PCL–SV patients from controls.
The color scale describes the proportion of leave-one-out interactions that selected the respective voxel at feature selection step (consistency).
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8 SATO ET AL.

TABLE 2
Statistical information at local maxima from discriminative clusters with overlap proportion across

subjects greater than 70%

X Y Z Side Overlap Size (voxels) BA Area

SVM 48 −28 −4 R 100% 121 22 Superior temporal sulcus
−68 −38 18 L 100% 21 22 Superior temporal gyrus

6 −40 22 R 100% 143 26 Isthmus of cingulate gyrus
MLDA 36 −82 8 R 100% 96 19 Occipital peristriate cortex

52 −28 −2 R 100% 88 22 Superior temporal sulcus

is an important predictor for both classifiers. On
the other hand, since MLDA uses more discrimi-
nant regions, it also indicates that the coefficients at
the right STG/STS, left occipital cortex, and poste-
rior cingulate gyrus contain relevant information to
predict the classes. The statistical information about
the clusters of discriminative regions is presented in
Table 2.

For each classifier, the leave-one-out projections
of each subject onto the discriminative hyperplane
space are shown in Figure 3. This figure indicates that
the variability within each group is approximately the
same at this space. Subject 13 stood out as a “control
group” outlier for both classifiers, since his projec-
tion was far from the decision boundary and at the
control group space set. Finally, note that the misclas-
sified subjects are not exactly the same for the two
classifiers, but most of them fall close to the decision
boundary.

In addition, in order to explore the sensitivity and
specificity of MLDA and SVM, Figure 4 describes the
Receiver-operator-characteristic (ROC) curves built by
ranking the leave-one-out decision values of each clas-
sifier. Note that in some points of the curve the SVM
may achieve a specificity and sensitivity of 80% and
86.7%, and MLDA achieved 86.7% and 80%, respec-
tively.

DISCUSSION

The study of the neural basis of psychopathy is of great
relevance to the understanding of this severe disorder.
This is reflected in the recent surge of electrophysio-
logical, structural, and functional MRI investigations
(Blair, Peschardt, Budhani, Mitchell, Pine, & 2006;
Fullam, McKie, & Dolan, 2009; Glenn, Raine, &
Schug, 2009; Glenn, Raine, Yaralian, & Yang, 2010;
Kiehl, Bates, Laurens, Hare, & Liddle, 2006; Müller
et al., 2008; Rilling et al., 2007; Veit et al., 2010). In
this study, we explored the applicability of multivariate
machine learning techniques to psychopathy diagnosis

based on gray matter indexes resulting from VBM data
preprocessing. Importantly, no group statistical infer-
ences were made by VBM procedures; instead, linear
SVM and MLDA classifiers were used to discriminate
between patients and controls based only on their GM
images (“GM concentration”). In addition, we showed
that these approaches may also provide anatomical
information on the brain mapping of regions contain-
ing relevant information used to discriminate between
the two classes.

From the neurobehavioral and anatomical perspec-
tive, the STS region identified by SVM and MLDA
has figured prominently in several studies of social
cognition and emotion, being implicated in social fea-
ture representation (e.g., emotional faces and body
posture), intentionality inferences, empathy, and moral
sentiments such as guilt, compassion, and embarrass-
ment (Decety, Chaminade, Grèzes, & Meltzoff, 2002;
de Gelder, 2006; Grèzes, Pichon, & de Gelder, 2007;
Kalbe et al., 2009; Leibenluft, Gobbini, Harrison,
Haxby, & 2004; Materna, Dicke, & Thier, 2008).
Although acquired damage to this region has not so far
been associated with the development of severe anti-
social behaviors, it has been suggested that this region
may critically work in concert with other frontal,
temporal, and subcortical regions to enable complex
social and emotional abilities, such as interpersonal
feelings. Despite these converging lines of evidence,
the problem of why the STS showed up more promi-
nently in the present study, and the neuroanatomical
implications of this finding for the diagnosis of psy-
chopathy, are matters of careful analyses, as discussed
below.

The goals of conventional brain-mapping meth-
ods, such as independent samples group comparisons
of means, using VBM or ROI volumetry and pat-
tern classification methods, are essentially distinct. In
the former, the aim is to reveal statistical differences
between groups on a voxel or ROI basis, indepen-
dently of how well this finding may help categorize
a given subject in a diagnostic group. The pattern
recognition methods focus less on how much infor-
mation a given region carries individually, and more
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PATTERN RECOGNITION OF MRI IMAGES IN PSYCHOPATHY 9

Figure 3. Leave-one-out projections of subjects onto discriminative hyperplane. The decision boundary is at zero in the x-axis. The black and
red points describe the control and patient groups, respectively.

on how well a combination of different brain regions
contributes to the correct classification of a given indi-
vidual into diagnostic categories. The present results

therefore show that the gray matter concentration
in the right STS, and to a lesser degree in a few
other frontoparieto-occipital regions (including the left
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10 SATO ET AL.

Figure 4. ROC curves for MLDA and SVM obtained by ranking
the leave-one-out decision values of each classifier.

STS), when classified according to SVM and MLDA,
can reach moderate-to-high accuracies in discriminat-
ing patients with high PCL– SV from normal individ-
uals. Thus, the present results emphasize that classifi-
cation methods are promising in predicting diagnostic
categories based on subtle differences in brain struc-
ture.

Another advantage of pattern classification meth-
ods over more classical approaches is that they are
not intrinsically dependent on contiguous spatial rela-
tionships of voxels. For example, the influence of
anatomical gyral variations is less critical for pattern
classification than for methods dependent on contigu-
ous variations (i.e., clustering, Gaussian fields the-
ory). It follows that these techniques can be useful
in alterations involving subtle changes spread across
the cortical mantle, regardless of spatial distribution.
Thus, the alterations can be uniformly distributed,
grouped in clusters, or any combination of these—
and all could be picked by pattern classification
methods.

Although, the potential clinical applicability of this
method is straightforward, a number of technical short-
comings and ethical implications must be addressed.
Potentially, pattern classification of brain data can
increase the diagnostic accuracy of psychopathy, and
even help to determine pathological subtypes—but the
practical value of this method has yet to be estab-
lished. One possibility would be to use the method,
in conjunction with other neurobehavioral tests, as a
supplement to clinical rating tools, such as PCL–R or
PCL–SV. Similarly, it is possible that the addition of
pattern classifications of brain data will add to the util-
ity of current procedures used to assess the risk of

crime and violence, and to select treatment options
for psychopathy. Medical diagnostic imaging in gen-
eral might benefit from pattern classification methods,
since interpretation of single-case images is a chal-
lenging task, exacerbated by technological advances
that may lead to increased diagnostic sensitivity at the
expense of specificity.

The small sample size is a limitation of the current
study. Leave-one-out and feature selection were imple-
mented in order to avoid results that arise from over-
fitting. However, leave-one-out accuracy rates were
statistically greater than chance (p < .05, for bino-
mial distribution with probability of success equal to
50%). It should also be emphasized that discriminating
subtle cortical changes in individuals with high levels
of psychopathy from healthy controls is less chal-
lenging than discriminating psychopathy from other
psychiatric conditions associated with a variety of
cortical abnormalities, such as borderline personal-
ity, drug abuse, attention deficit-hyperactivity disorder,
and other neuropsychiatric disorders (Georgopoulos
et al., 2010; Nardo et al., 2010; Schaufelberger et al.,
2007; Schlaepfer et al., 2006; Zhu et al., 2005).
Critically, reduced gray matter volume in the STS
region, which had the greatest discriminative power
in this study, is found not only in psychopathy (de
Oliveira-Souza et al., 2008b; Müller et al., 2008), but
also in schizotypal and borderline personality disor-
ders (Goldstein et al., 2009). Moreover, abnormalities
in several frontotemporo-limbic regions are implicated
in both psychopathy and other psychiatric disorders
(Benetti et al., 2010; Brunner et al., 2010; Soloff,
Nutche, Goradia, & Diwadkar, 2008; Zou et al., 2010).
Clearly, much more research is needed to determine
the ability of classification algorithms to discrimi-
nate among different conditions, especially given the
fact that patients may show multiaxial patterns of
psychopathology. Future studies should investigate
how the anatomical distributions of cortical anomalies
relate to the diagnostic accuracies in discriminating
among disorders, not only in offender and patient sam-
ples but also in various other settings, such as the
corporate world.

Another caveat when interpreting the anatomical
results emerging from pattern classification, as well
as from other anatomical and functional imaging data,
relates to the fact that the pathogenesis of psychopathy
are multifactorial, emerging from a range of neurolog-
ical, genetic, and environmental ingredients (Weber,
Habel, Amunts, & Schneider, 2008). Combining data
from genetic biomarkers, neuropsychology, and multi-
modal imaging may be extremely helpful in further-
ing our understanding of complex disorders such as
psychopathy. It is likely that classifiers using these
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PATTERN RECOGNITION OF MRI IMAGES IN PSYCHOPATHY 11

different types of data will prove to be even more
useful and powerful than imaging data alone.

In summary, the results of the current study suggest
that it is possible to discriminate patients with psy-
chopathy from healthy controls, with relatively high
sensitivity and specificity rates, solely by measuring
the gray matter MRI features. Future studies may
extend the present approach by employing multivariate
approaches to predict the psychopathy scores in larger
patient samples. In addition, pattern classification of
functional MRI experiments addressing moral judg-
ments and feelings in psychopathy (Glenn et al., 2009;
Moll et al., 2002, 2007; Veit et al., 2010) may reveal
how functional impairments of specific frontotemporo-
limbic networks can facilitate the identification of
individuals with this severe disorder.
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